

Disciplina: Inteligência Artificial Aplicada à Instrumentação Industrial	Código: EMC 410128
Área(s) de Concentração: Metrologia e Instrumentação	
Carga Horária Total: 15h	N° de Créditos: 1
Teórica: 12h	Classificação: Normal
Prática: 3h	Bimestre (s): 4º
Professor: Carlos Alberto Flesch	

Pré-requisitos:

Código	Disciplina
000.00	2.00.0

Ementa:

Inteligência artificial. Ferramentas de IA: redes neurais artificiais, lógica *fuzzy*, redes bayesianas e sistemas híbridos. Caracterização e desenvolvimento de aplicativos empregando ferramentas de IA. Aplicações de técnicas de IA em instrumentação. Aprofundamento na aplicação de redes neurais artificiais. Aspectos da confiabilidade metrológica de ferramentas baseadas em IA.

Programa:

1. Inteligência Artificial: Conceitos; Modelagem clássica versus modelagem baseada em IA; Ferramentas de IA; Aplicações de IA em instrumentação. 2. Redes Neurais Artificiais: Tipos de redes; Aspectos dinâmicos e estáticos; Arquiteturas de redes neurais; Treinamento de redes neurais; Exemplos de aplicação de redes neurais. 3. Detalhamento da aplicação de redes neurais em instrumentação: Características da aplicação; - Exemplos de aplicação em instrumentação; Enfoque metrológico da avaliação da confiabilidade de ferramentas baseadas em redes neurais. 4. Redes Bayesianas: Raciocínio probabilístico; Probabilidade e Teorema de Bayes; Construção de redes bayesianas; Exemplos de aplicação de redes bayesianas em instrumentação; Enfoque metrológico da avaliação da confiabilidade de ferramentas baseadas em redes bayesianas. 5. Lógica Fuzzy: Conjuntos fuzzy: definições, propriedades e operações; Desenvolvimento de sistemas fuzzy; Exemplos de aplicações de lógica fuzzy.

Critério de Avaliação:

Trabalhos teórico-experimentais, 50 % da nota; testes, 50 % da nota.

Bibliografia:

HAYKIN, S. Neural Networks - A Comprehensive Foundation, NJ: Pearson Education, 1999.

RUSSELL, S.; NORVIG, P. Artificial intelligence: a modern approach. Second edition. Prentice Hall series in artificial intelligence, New Jersey, 2003. 1081 p.

ABLAMEYKO S.; GORAS L.; GORI M.; V. PIURI. Neural Networks for Instrumentation, Measurement and Related Industrial Applications. NATO Science Series: Computer & Systems Sciences. v. 185, 2003.

SILER, W.; BUCKLEY, J.J. Fuzzy expert systems and fuzzy reasoning, John Wiley, 2005. 422 p.

KORB, K. B.; NICHOLSON, A. E. Bayesian artificial intelligence. Chapman & Hall/CRC, 2004.

NORSYS SOFTWARE CORPORATION. Netica Website Tutorial. (2006).

EFRON, B.; TIBSHIRANI, R. An Introduction to the Bootstrap. Chapman & Hall, 1993.

- *BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. JCGM 100: Evaluation of measurement data Guide to the expression of uncertainty in measurement. Sep. 2008a. 134 p.
- *BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. JCGM 101: Supplement 1 to the "Guide to the expression of uncertainty in measurement" Propagation of distributions using a Monte Carlo method. Sep. 2008b. 90 p.
- *BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. JCGM 104: Evaluation of measurement data An introduction to the "Guide to the expression of uncertainty in measurement" and related documents. Jul. 2009. 28 p.
- *BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. JCGM 200: International vocabulary of metrology Basic and general concepts and associated terms VIM. Jul. 2012. 104 p.
- *Disponível em www.bipm.org/en/publications

Obs.: Referências complementares serão indicadas no decorrer da disciplina.